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Abstract

In this thesis, a numerically efficient three-dimensional propagation and scattering
model is developed based on the three-dimensional coupled mode theory for axisym-
metric bathymetry. The three-dimensional coupled mode approach applied in this
thesis is fundamentally identical to the one applied in earlier models, such as the
one presented by Taroudakis [20]. Thus, it is based on a Fourier expansion of the
acoustic field around a seamount, with each azimuthal expansion coefficient being
represented by a two-way coupled mode formulation. However, earlier formulations
were severely limited in terms of frequency, size and geometry of the seamount, the
seabed composition, and the distance between the source and the seamount, and
are totally inadequate for modeling high-frequency, large-scale seamount problems.
By introducing a number of changes in the numerical formulation and using a stan-
dard normal mode model (C-SNAP) for determining the fundamental modal solutions
and coupling coeflicients, orders of magnitude improvement in efficiency and fidelity
has been achieved, allowing for realistic propagation and scattering scenarios to be
modeled, including effects of seamount roughness and realistic sedimentary structure.
Also, by the simple superposition principle, the computational requirements are made
independent of the distance between the seamount and the source and receivers, and
dependent only on the geometry of the seamount and the frequency of the source.
First, this thesis investigates the scattering from a cylindrical island, which is the
simplest case of a conical seamount problem. Our model, using the superposition
method, can solve the cylindrical problem in Athanassoulis and Prospathopoulos’s
paper [3] with the same accuracy while saving about 4/5 computational effort.
Second, this thesis demonstrates the spectral coupled mode approach, which in-
cludes a two-way coupled mode model and a superposition representation of the field.
Third, this thesis applies the three-dimensional model to investigate some physics
issues of three-dimensional seamount scattering. As a result of the investigation, we
learn that the N x2D model is a poor approximation of the true three-dimensional
model when the three-dimensional effects are significant, though it is a good approx-
imation of the three-dimensional model otherwise. The convergence of the model in
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terms of the seamount discretization is also discussed and demonstrated.

Finally, our three-dimensional spectral coupled mode model is tested by the ap-
plication of the Kermit Seamount problem with realistic ocean environmental data
from the 2004 BASSEX experiment.

Thesis Supervisor: Henrik Schmidt
Title: Professor
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%(bc (with respect to the source) in case 2a, (a) from the source, (b)
from the beginning of the seamount. There is no visible difference
between the 3D result and the N x2D result from the source to the
beginning of the seamount. From the beginning of the seamount to 2
km, the correlation coefficient between the 3D result and the N x2D
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Transmission loss vs. range at depth 100 m and azimuthal angle ¢ = ¢,
(with respect to the source) in case 2a, (a) from the source, (b) from
the beginning of the seamount. There is no visible difference between
the 3D result and the N x2D result from the source to the beginning
of the seamount. From the beginning of the seamount to 2 km, the
correlation coefficient between the 3D result and the N x2D result is
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9-26 Transmission loss in the horizontal plane at depth 100 m in case 2a, (a)

by our 3D model, (b) by the Nx2D model. There is great difference

between the 3D result and the N x2D result in the perturbation zone.

5-27 Transmission loss in the vertical plane at azimuthal angle ¢ = 0 (with

5-28

9-29

5-30

respect to the source) in case 2a, (a) by our 3D model, (b) by the
N x2D model. There is no visible difference between the 3D result and

the Nx2D result from the source to the beginning of the seamount;

however, great difference appears from the beginning of the seamount.

Transmission loss vs. range at depth 100 m, azimuthal angle ¢ = 0
(with respect to the source) in case 2b, (a) from the source, (b) from
the beginning of the seamount. There is no visible difference between
the 3D result and the N x2D result from the source to the beginning
of the seamount. From the beginning of the seamount to 2 km, the
correlation coefficient between the 3D result and the N x2D result is
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Transmission loss vs. range at depth 100 m, azimuthal angle ¢ = Zld)c
(with respect to the source) in case 2b, (a) from the source, (b) from
the beginning of the seamount. There is no visible difference between
the 3D result and the N x2D result from the source to the beginning
of the seamount. From the beginning of the seamount to 2 km, the
correlation coefficient between the 3D result and the N x2D result is
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Transmission loss vs. range at depth 100 m, azimuthal angle ¢ = %cbc
(with respect to the source) in case 2b, (a) from the source, (b) from
the beginning of the seamount. There is no visible difference between
the 3D result and the N x2D result from the source to the beginning
of the seamount. From the beginning of the seamount to 2 km, the
correlation coeflicient between the 3D result and the N x2D result is
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9-31

9-32

5-33

5-34

5-35

Transmission loss vs. range at depth 100 m, azimuthal angle ¢ = %d)(.
(with respect to the source) in case 2b, (a) from the source, (b) from
the beginning of the seamount. There is no visible difference between
the 3D result and the N x2D result from the source to the beginning
of the seamount. From the beginning of the seamount to 2 km, the
correlation coefficient between the 3D result and the N x2D result is
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Transmission loss vs. range at depth 100 m, azimuthal angle ¢ = ¢,
(with respect to the source) in case 2b, (a) from the source, (b) from
the beginning of the seamount. There is no visible difference between
the 3D result and the N x2D result from the source to the beginning
of the seamount. From the beginning of the seamount to 2 km, the
correlation coefficient between the 3D result and the N x2D result is
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Transmission loss in the horizontal plane at depth 100 m in case 2b, (a)
by our 3D model, (b) by the N x2D model. There is great difference

between the 3D result and the N x2D result in the perturbation zone.

Transmission loss in the vertical plane at azimuthal angle ¢ = 0 (with
respect to the source) in case 2b, (a) by our 3D model, (b) by the
N x2D model. There is no visible difference between the 3D result and
the N x2D result from the source to the beginning of the seamount;

however, difference appears from the beginning of the seamount. . . .

TL in the horizontal plane at depth 100 m. (a) H is 25 m, the 3D
result, (b) H is 25 m, the N x2D result; (¢) H is 50 m, the 3D result,
(d) H is 50 m, the N x2D result; (e) H is 100 m, the 3D result, (f) H

is 100 m, the Nx2D result. (H is the height of a seamount.) . . . . .
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9-36 TL in horizontal planes with a seamount of height 1000 m, (a) at
depth 300 m, the 3D result, (b) at depth 300 m, the N x2D result;
(c) at depth 3800 m, the 3D result, (d) at depth 3800 m, the N x2D
result; (e) at depth 4500 m, the 3D result, (f) at depth 4500 m, the
N x2D result. When the seamount is relatively low, the N x2D model

is a good approximation of the 3D model. . . . . . ... ... .. ..

5-37 TL in horizontal planes with a seamount of height 3800 m, (a) at
depth 300 m, the 3D result, (b) at depth 300 m, the N x2D result; (c)
at depth 3800 m, the 3D result, (d) at depth 3800 m, the N x2D result;
(e) at depth 4500 m, the 3D result, (f) at depth 4500 m, the N x2D
result. When the seamount is relatively high, the N x2D model is not
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without the shear wave, at depth 300 m; (¢) with the shear wave, at
depth 3800 m, (d) without the shear wave, at depth 3800 m; (e) with
the shear wave, at depth 4500 m, (f) without the shear wave, at depth
4500 m. No visible difference is introduced by including the shear wave

intheseameint: wo s v e BE S S @ e s B 0BT % s &% a5 5
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Chapter 1

Introduction

1.1 Motivation

During the last decades, a large number of numerical models have been developed
dealing with the solutions of acoustic propagation in the ocean. Most of these models
are aimed at providing solutions for two-dimensional (range and depth) problems,
and they provide satisfactory solutions when the dependence on the third dimension,
azimuth, is negligible.

However, the nature of the ocean itself is three dimensional. For example, the
presence of a seamount, or an eddy, etc, will introduce an azimuthal inhomogeneity.
In situations in which the three-dimensional effects can not be neglected, the two-
dimensional models, or N x2D models, fail to provide accurate solutions. In such
situations, we need a model that can give accurate calculation of the field not only
on range and depth, but also on azimuth, i.e., a three-dimensional model.

Solving three-dimensional propagation problems is difficult because the ocean
must be modeled by a large number of parameters. In addition, even if a three-
dimensional problem is formulated elegantly by means of mathematical and physical
theory, the realistic implementation of such a solution requires huge computational
effort.

My research is supported by the US Office of Naval Research (ONR). The goal of

my research is to develop a numerically efficient three-dimensional propagation and
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scattering model.

1.2 Previous Work

The simulation of acoustic propagation in a range-dependent waveguide remains
an area of active research. Among such problems, the problem of modeling three-
dimensional sound propagation has drawn the attention of many scientists and engi-
neers.

Three-dimensional models based on the parabolic equation (PE) method have
been introduced by several researchers [4, 13, 19]. As is well known, parabolic equation
models are suitable for treating underwater acoustic propagation problems in cases
only where no significant backscattered field is expected because of the parabolic ap-
proximations introduced in reducing the full elliptic wave equation (Helmholtz equa-
tion) to the parabolic equation. In addition, the work by McDaniel [15] shows that the
parabolic approximations have inherent phase errors, which limit their applicability
to a certain range of angles around the main propagation direction.

The normal mode method is intended to solve the full-wave equation (Helmholtz
equation), so it is valid for the cases where backscattering is important (e.g., steep
obstacles, seamounts, or islands). In addition, the spectral coupled mode method is
useful for physics interpretation because of the decomposition of the field into vertical
modes and azimuthal modes.

In a paper by Athanassoulis and Propathopoulous [3], an analytic solution is pre-
sented for the three-dimensional problem of acoustic scattering from a nonpenetrable
cylindrical island in shallow water. Although that solution is valid only for a rigid or
soft cylindrical island, it can serve as a three-dimensional benchmark solution in the
appropriate frequency range.

In 1996, a coupled-mode formulation for the solution of the Helmholtz equation in
water in the presence of a conical seamount was developed by Taroudakis [20]. In his
work, the conical seamount is divided into a number of rings, in each of which a series

expansion of the acoustic pressure in terms of normal modes and cosine functions is
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considered. The coefficients of the various expansions are obtained by solving linear
systems of equations resulting from the application of continuity conditions at the
artificial interfaces of the rings. But there are several disadvantages in this model.
First, since Hankel functions of high orders are involved in the expansions, numerical
problems arise in the numerical implementation of the scheme in the case of the
low convergence rate. Second, when the source is very far from the seamount, the
number of azimuthal modes leading to convergence is too large to make this method
applicable. Finally, this formulation may yield instable solutions since the linear
systems to be solved in this formulation are not unconditionally stable.

In order to obtain a stable system from Taroudakis’s model, Eskenazi used the
Direct Global Matrix (DGM) approach in his master’s thesis [6]. Eskenazi’s model
successfully solves only the problem of instability in Taroudakis’s model. Because the
dimensions of the linear systems are too large to be solved by regular software, such
as MATLAB, Eskenazi used a special tool, LAPACK (Linear Algebra Package) [2],
to solve these linear systems. In addition, the low efficiency of Eskenazi’s model
makes it not applicable to large-scale ocean acoustic problems due to the limitation

of computational capabilities.

1.3 My Contribution

A new three-dimensional spectral coupled mode model is developed in this thesis,
which extends the application of Taroudakis’s formulation. This model has the fol-

lowing advantages:

1) Jul(kenr) and Hr(,})(kmr) are used as the two linearly independent solutions of the
Bessel equation in this model, instead of H,(,: )(kmr) and H{? )(kmr) in Taroudakis’s
approach. The advantage is that J,,(k.,7) and H,(ri)(kmr) remain linearly inde-

pendent for both large and small arguments in numerical implementation.

2) Normalized Bessel and Hankel functions are used to avoid overflow and underflow

problems; in addition, the asymptotic forms of normalized Bessel and Hankel func-

31



o
S

tions for small and large arguments are used. As a result, there is no numerical
problem in evaluating high-order normalized Bessel and Hankel functions. More-
over, the recurrence relations of Bessel and Hankel functions are used in evaluating

these functions of different orders, which improves efficiency

The two-way coupled mode approach used in this model has low requirements
for computer memory. For each azimuthal mode, instead of solving one linear
system of a large dimension as in the DGM approach, this model solves multiple
linear systems of small dimensions. This makes it possible to solve linear systems

without using special tools such as LAPACK.

The coupling matrixes are independent of azimuthal orders, so they can be pre-
calculated only once and stored. In our model, codes are added to C-SNAP to

compute and store the coupling matrixes.

The efficiency is improved dramatically by introducing the superposition repre-
sentation of the external field with respect to the seamount. In this model, the
number of azimuthal modes required for convergence depends only on the product
of the wavenumber and the radius of the base of the conical seamount /cylindrical
island. In Athanassoulis and Propathopoulous’s model, Taroudakis’s model, and
Eskenazi’s model, this value depends on the product of the wavenumber and the
distance between the source and the axle of the conical seamount/cylindrical is-

land.

This model can be run in parallel on separate computers; therefore, it is applicable

to large-scale three-dimensional problems.

In short, this new three-dimensional spectral coupled mode model is stable and

efficient. For example, to solve the numerical example in Eskenazi’s master’s thesis [6],

Eskenazi’s model was run in parallel on 7 computers among which were six PCs (one

333 MHz Pentium II, two 400 MHz Pentium II, two 600 MHz Pentium III, and one

600 MHz K7 microprocessors), and one Alpha workstation (with a 667 MHz EV67
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microprocessor), with a runtime of between one week and ten days. However, by

running our model on a single PC (1.7 GHz P4), the runtime is only several hours.
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Chapter 2

The Normal Mode Solution to the

Helmholtz Equation

Underwater sound propagation is mathematically described by the wave equation,
and the frequency-domain wave equation is known as the Helmholtz equation. There
are essentially five types of models to solve it: Fast Field Program (FFP); normal
mode (NM); ray; parabolic equation (PE) models; and direct finite-difference (FD),
or finite-element (FE) solutions. This chapter is mainly concerned with the normal

mode solution to the Helmholtz equation.

2.1 The General Helmholtz Equation

In a horizontally stratified medium, the general homogeneous wave equation takes

Jo (Lgp) L
WV (157%) - a8 = e

the form [12, p.69]

with harmonic representation p(r,t) = p(f)e ™! and 9%/0t* = —w?, Eq. (2.1) gives

rise to the general homogeneous Helmholtz equation,

p(2)V - ( Vp) + C;zi)p =i (2.2)

p(2)
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